The derivation of local volatility is outlined in many papers and textbooks (such as the one by Jim Gatheral [1]), but in the derivations many steps are left out. In this Note we provide two derivations of local volatility.

1. The derivation by Dupire [2] that uses the Fokker-Planck equation.
2. The derivation by Derman et al. [3] of local volatility as a conditional expectation.

We also present the derivation of local volatility from Black-Scholes implied volatility, outlined in [1]. We will derive the following three equations that involve local volatility \(\sigma = \sigma(S_t, t) \) or local variance \(\nu_L = \sigma^2 \).

1. The Dupire equation in its most general form (appears in [1] on page 9)

 \[
 \frac{\partial C}{\partial T} = \frac{1}{2} \sigma^2 K \frac{\partial^2 C}{\partial K^2} + (r_T - q_T) \left(C - K \frac{\partial C}{\partial K} \right) - r_T C. \tag{1}
 \]

2. The equation by Derman et al. [3] for local volatility as a conditional expected value (appears with \(q_T = 0 \) in [3])

 \[
 \frac{\partial C}{\partial T} = -K(r_T - q_T) \frac{\partial C}{\partial K} - q_T C + \frac{1}{2} K^2 E \left[\sigma_T^2 | S_T = K \right] \frac{\partial^2 C}{\partial K^2}. \tag{2}
 \]

3. Local volatility as a function of Black-Scholes implied volatility, \(\Sigma = \Sigma(K, T) \) (appears in [1]) expressed here as the local variance \(\nu_L \)

 \[
 \nu_L = \frac{\partial w}{\partial T} \left[1 - \frac{y}{\nu} \frac{\partial w}{\partial y} + \frac{1}{2} \frac{\partial^2 w}{\partial y^2} + \frac{1}{4} \left(-\frac{1}{4} - \frac{1}{\nu} + \frac{y^2}{\nu^2} \right) \left(\frac{\partial w}{\partial y} \right)^2 \right]. \tag{3}
 \]

 where \(w = \Sigma(K, T)^2 T \) is the Black-Scholes total implied variance and \(y = \ln \frac{K}{F_T} \) where \(F_T = \exp \left(\int_0^T \mu_t dt \right) \) is the forward price with \(\mu_t = r_t - q_t \) (risk free rate minus dividend yield). Alternatively, local volatility can also be expressed in terms of \(\Sigma \) as

 \[
 \frac{\Sigma^2 + 2 \Sigma T \left[\frac{\partial \Sigma}{\partial T} + (r_T - q_T) K \frac{\partial \Sigma}{\partial K} \right]}{\left(1 + K y \frac{\partial \Sigma}{\partial K} \right)^2} + \frac{K \Sigma T}{\frac{\partial \Sigma}{\partial K} - \frac{1}{4} K \Sigma T \left(\frac{\partial \Sigma}{\partial K} \right)^2 + K \frac{\partial^2 \Sigma}{\partial K^2}}. \]

Solving for the local variance in Equation (1), we obtain

\[
\sigma^2 = \sigma(K, T)^2 = \frac{\frac{\partial C}{\partial T} - (r_T - q_T) (C - K \frac{\partial C}{\partial K})}{\frac{1}{2} K^2 \frac{\partial^2 C}{\partial K^2}}. \tag{4}
\]
If we set the risk-free rate \(r_T \) and the dividend yield \(q_T \) each equal to zero, Equations (1) and (2) can each be solved to yield the same equation involving local volatility, namely

\[
\sigma^2 = \sigma(K, T)^2 = -\frac{\partial C}{\partial T} \frac{1}{2K^2} \frac{\partial^2 C}{\partial K^2}.
\]

(5)

The local volatility is then \(v_L = \sqrt{\sigma^2(K, T)} \). In this Note the derivation of these equations are all explained in detail.

1 Local Volatility Model for the Underlying

The underlying \(S_t \) follows the process

\[
dS_t = \mu S_t dt + \sigma(S_t, t) S_t dW_t
\]

(6)

\[
= (r_t - q_t) S_t dt + \sigma(S_t, t) S_t dW_t.
\]

We sometimes drop the subscript and write \(dS = \mu S dt + \sigma S dW \) where \(\sigma = \sigma(S_t, t) \). We need the following preliminaries:

- Discount factor \(P(t, T) = \exp \left(-\int_t^T r_s ds\right) \).
- Fokker-Planck equation. Denote by \(f(S_t, t) \) the probability density function of the underlying price \(S_t \) at time \(t \). Then \(f \) satisfies the equation

\[
\frac{\partial f}{\partial t} = -\frac{\partial}{\partial S} [\mu S f(S, t)] + \frac{1}{2} \frac{\partial^2}{\partial S^2} \left[\sigma^2 S^2 f(S, t) \right].
\]

(7)

- Time-\(t \) price of European call with strike \(K \), denoted \(C = C(S_t, K) \)

\[
C = P(t, T) E \left[(S_T - K)^+ \right] = P(t, T) E \left[(S_T - K) 1_{(S_T > K)} \right] = P(t, T) \int_K^\infty (S_T - K) f(S, T) dS.
\]

(8)

where \(1_{(S_T > K)} \) is the Heaviside function and where \(E[\cdot] = E[\cdot|\mathcal{F}_t] \). In the all the integrals in this Note, since the expectations are taken for the underlying price at \(t = T \) it is understood that \(S = S_T, f(S, T) = f(S_T, T) \) and \(dS = dS_T \). We sometimes omit the subscript for notational convenience.

2 Derivation of the General Dupire Equation (1)

2.1 Required Derivatives

We need the following derivatives of the call \(C(S_t, t) \).

2...
• First derivative with respect to strike

\[
\frac{\partial C}{\partial K} = P(t, T) \int_K^\infty \frac{\partial}{\partial K} (S_T - K) f(S, T) dS
\]

(9)

\[
= -P(t, T) \int_K^\infty f(S, T) dS.
\]

• Second derivative with respect to strike

\[
\frac{\partial^2 C}{\partial K^2} = -P(t, T) \left[f(S, T) \right]_{S=\infty}^{S=K}
\]

(10)

\[
= P(t, T) f(K, T).
\]

We have assumed that \(\lim_{S \to \infty} f(S, T) = 0. \)

• First derivative with respect to maturity–use the chain rule

\[
\frac{\partial C}{\partial T} = \frac{\partial C}{\partial T} P(t, T) \times \int_K^\infty (S_T - K) f(S, T) dS +
\]

(11)

\[
P(t, T) \times \int_K^\infty (S_T - K) \frac{\partial}{\partial T} \left[f(S, T) \right] dS.
\]

Note that \(\frac{\partial P}{\partial T} = -r_T P(t, T) \) so we can write (11)

\[
\frac{\partial C}{\partial T} = -r_T C + P(t, T) \int_K^\infty (S_T - K) \frac{\partial}{\partial T} \left[f(S, T) \right] dS.
\]

(12)

2.2 Main Equation

In Equation (12) substitute the Fokker-Planck equation (7) for \(\frac{\partial f}{\partial t} \) at \(t = T \)

\[
\frac{\partial C}{\partial T} + r_T C = P(t, T) \int_K^\infty (S_T - K) \times
\]

\[
\left\{- \frac{\partial}{\partial S} [\mu_T S f(S, T)] + \frac{1}{2} \frac{\partial^2}{\partial S^2} \left[\sigma^2 S^2 f(S, T) \right] \right\} dS.
\]

(13)

This is the main equation we need because it is from this equation that the Dupire local volatility is derived. In Equation (13) have two integrals to evaluate

\[
I_1 = \mu_T \int_K^\infty (S_T - K) \frac{\partial}{\partial S} [S f(S, T)] dS,
\]

(14)

\[
I_2 = \int_K^\infty (S_T - K) \frac{\partial^2}{\partial S^2} \left[\sigma^2 S^2 f(S, T) \right] dS.
\]

Before evaluating these two integrals we need the following two identities.
2.3 Two Useful Identities

2.3.1 First Identity

From the call price Equation (8), we obtain
\[
\frac{C}{P(t,T)} = \int_{K}^{\infty} (S_T - K) f(S,T) dS = \int_{K}^{\infty} S_T f(S,T) dS - K \int_{K}^{\infty} f(S,T) dS.
\] (15)

From the expression for \(\frac{\partial C}{\partial K} \) in Equation (9) we obtain
\[
\int_{K}^{\infty} f(S,T) dS = -\frac{1}{P(t,T)} \frac{\partial C}{\partial K}.
\]

Substitute back into Equation (15) and re-arrange terms to obtain the first identity
\[
\int_{K}^{\infty} S_T f(S,T) dS = \frac{C}{P(t,T)} - \frac{K}{P(t,T)} \frac{\partial C}{\partial K}.
\] (16)

2.3.2 Second Identity

We use the expression for \(\frac{\partial^2 C}{\partial K^2} \) in Equation (10) to obtain the second identity
\[
f(K,T) = \frac{1}{P(t,T)} \frac{\partial^2 C}{\partial K^2}.
\] (17)

2.4 Evaluating the Integrals

We can now evaluate the integrals \(I_1 \) and \(I_2 \) defined in Equation (14).

2.4.1 First integral

Use integration by parts with \(u = S_T - K, u' = 1, v' = \frac{\partial}{\partial S} [S f(S,T)], v = S f(S,T) \)
\[
I_1 = [\mu_T (S_T - K) S_T f(S,T)]_{S=K}^{S=\infty} - \mu_T \int_{K}^{\infty} S f(S,T) dS
= [0 - 0] - \mu_T \int_{K}^{\infty} S f(S,T) dS.
\]

We have assumed \(\lim_{S \to \infty} (S - K) S f(S,T) = 0 \). Substitute the first identity (16) to obtain the first integral \(I_1 \)
\[
I_1 = \frac{-\mu_T C}{P(t,T)} + \frac{\mu_T K}{P(t,T)} \frac{\partial C}{\partial K}.
\] (18)
2.4.2 Second integral

Use integration by parts with \(u = ST - K, u' = 1, v' = \frac{\partial}{\partial S} \left[\sigma^2 S^2 f(S, T) \right], v = \frac{\partial}{\partial S} \left[\sigma^2 S^2 f(S, T) \right] \)

\[
I_2 = \left[(ST - K) \frac{\partial}{\partial S} \left\{ \sigma^2 S^2 f(S, T) \right\} \right]_{S=K}^{S=\infty} - \int_K^\infty \frac{\partial}{\partial S} \left[\sigma^2 S^2 f(S, T) \right] dS
\]

\[
= \left[0 - 0 \right] - \left[\sigma^2 S^2 f(S, T) \right]_{S=K}^{S=\infty}
\]

\[
= \sigma^2 K^2 f(K, T)
\]

where \(\sigma^2 = \sigma(K, T)^2 \). We have assumed that \(\lim_{S \to \infty} \frac{\partial}{\partial S} \left\{ \sigma^2 S^2 f(S, T) \right\} = 0 \).

Substitute the second identity (17) for \(f(K, T) \) to obtain the second integral \(I_2 \)

\[
I_2 = \frac{\sigma^2 K^2}{P(t, T)} \frac{\partial^2 C}{\partial K^2}. \tag{19}
\]

2.5 Obtaining the Dupire Equation

We can now evaluate the main Equation (13) which we write as

\[
\frac{\partial C}{\partial T} + r_T C = P(t, T) \left[-I_1 + \frac{1}{2} I_2 \right].
\]

Substitute for \(I_1 \) from Equation (18) and for \(I_2 \) from Equation (19)

\[
\frac{\partial C}{\partial T} + r_T C = \mu_T C - \mu_T K \frac{\partial C}{\partial K} + \frac{1}{2} \sigma^2 K^2 \frac{\partial^2 C}{\partial K^2}
\]

Substitute for \(\mu_T = r_T - q_T \) (risk free rate minus dividend yield) to obtain the Dupire equation (1)

\[
\frac{\partial C}{\partial T} = \frac{1}{2} \sigma^2 K^2 \frac{\partial^2 C}{\partial K^2} + (r_T - q_T) \left(C - K \frac{\partial C}{\partial K} \right) - r_T C.
\]

Solve for \(\sigma^2 = \sigma(K, T)^2 \) to obtain the Dupire local variance in its general form

\[
\sigma(K, T)^2 = \frac{\frac{\partial C}{\partial T} + q_T C + (r_T - q_K) K \frac{\partial C}{\partial K}}{\frac{1}{2} K^2 \frac{\partial^2 C}{\partial K^2}}
\]

Dupire [2] assumes zero interest rates and zero dividend yield. Hence \(r_T = q_T = 0 \) so that the underlying process is \(dS_t = \sigma(S_t, t) dW_t \). We obtain

\[
\sigma(K, T)^2 = \frac{\frac{\partial C}{\partial T}}{\frac{1}{2} K^2 \frac{\partial^2 C}{\partial K^2}}.
\]

which is Equation (5).
3 Derivation of Local Volatility as an Expected Value, Equation (2)

We need the following preliminaries, all of which are easy to show

\[
\begin{align*}
\frac{\partial}{\partial S} (S-K)^+ &= 1_{(S>K)} \\
\frac{\partial}{\partial K} (S-K)^+ &= -1_{(S>K)} \\
\frac{\partial C}{\partial K} &= -P(t,T)E[1_{(S>K)}] \\
\frac{\partial^2 C}{\partial K^2} &= P(t,T)E[\delta(S-K)] \\
\end{align*}
\]

In the table, \(\delta(\cdot)\) denotes the Dirac delta function. Now define the function \(f(S_T, T)\) as

\[f(S_T, T) = P(t, T)(S_T - K)^+ \]

Recall the process for \(S_t\) is given by Equation (6). By Itô’s Lemma, \(f\) follows the process

\[df = \left[\frac{\partial f}{\partial T} + \mu_T S_T \frac{\partial f}{\partial S_T} + \frac{1}{2} \sigma_T^2 S_T^2 \frac{\partial^2 f}{\partial S_T^2} \right] dT + \left[\sigma_T S_T \frac{\partial f}{\partial S_T} \right] dW_T. \tag{20} \]

Now the partial derivatives are

\[
\begin{align*}
\frac{\partial f}{\partial T} &= -r_T P(t,T)(S_T - K)^+, \\
\frac{\partial f}{\partial S_T} &= P(t,T)1_{(S_T > K)}, \\
\frac{\partial^2 f}{\partial S_T^2} &= P(t,T)\delta(S_T - K). \\
\end{align*}
\]

Substitute them into Equation (20)

\[
\begin{align*}
df &= P(t,T) \times \\
&\quad \left[-r_T(S_T - K)^+ + \mu_T S_T 1_{(S_T > K)} + \frac{1}{2} \sigma_T^2 S_T^2 \delta(S_T - K) \right] dT \\
&\quad + P(t,T) \left[\sigma_T S_T 1_{(S_T > K)} \right] dW_T
\end{align*}
\]

Consider the first two terms of (21), which can be written as

\[
\begin{align*}
-r_T(S_T - K)^+ + \mu_T S_T 1_{(S_T > K)} &= -r_T(S_T - K)1_{(S_T > K)} + \mu_T S_T 1_{(S_T > K)} \\
&= r_T K 1_{(S_T > K)} - q_T S_T 1_{(S_T > K)}. \\
\end{align*}
\]

When we take the expected value of Equation (21), the stochastic term drops out since \(E[dW_T] = 0\). Hence we can write the expected value of (21) as

\[dC = E[df] \]

\[= P(t,T)E \left[r_T K 1_{(S_T > K)} - q_T S_T 1_{(S_T > K)} + \frac{1}{2} \sigma_T^2 S_T^2 \delta(S_T - K) \right] dT \]
so that
\[\frac{dC}{dT} = P(t, T)E \left[r_T S_T 1_{(S_T > K)} - q_T S_T 1_{(S_T > K)} + \frac{1}{2} \sigma_T^2 S_T^2 \delta(S_T - K) \right] . \]
(23)

Using the second line in Equation (8), we can write
\[P(t, T)E \left[S_T 1_{(S_T > K)} \right] = C + KP(t, T)E \left[1_{(S_T > K)} \right] \]
so Equation (23) becomes
\[\frac{dC}{dT} = KP(t, T)E \left[1_{(S_T > K)} \right] \]
\[+ \frac{1}{2} P(t, T)E \left[\sigma_T^2 S_T^2 \delta(S_T - K) \right] \]
\[= -K(r_T - q_T) \frac{\partial C}{\partial K} - q_T C + \frac{1}{2} P(t, T)E \left[\sigma_T^2 S_T^2 \delta(S_T - K) \right] \]
where we have substituted \(-\frac{\partial C}{\partial K}\) for \(P(t, T)E[1_{(S_T > K)}]\). The last term in the last line of Equation (24) can be written
\[\frac{1}{2} P(t, T)E \left[\sigma_T^2 S_T^2 \delta(S_T - K) \right] = \frac{1}{2} P(t, T)E \left[\sigma_T^2 S_T^2 | S_T = K \right] E[\delta(S_T - K)] \]
\[= \frac{1}{2} P(t, T)E \left[\sigma_T^2 | S_T = K \right] K^2 E[\delta(S_T - K)] \]
\[= \frac{1}{2} E \left[\sigma_T^2 | S_T = K \right] K^2 \frac{\partial^2 C}{\partial K^2} \]
where we have substituted \(\frac{\partial^2 C}{\partial K^2}\) for \(P(t, T)E[\delta(S_T - K)]\). We obtain the final result, Equation (2)
\[\frac{\partial C}{\partial T} = -K(r_T - q_T) \frac{\partial C}{\partial K} - q_T C + \frac{1}{2} K^2 E \left[\sigma_T^2 | S_T = K \right] \frac{\partial^2 C}{\partial K^2} . \]
When \(r_T = q_T = 0\) we can re-arrange the result to obtain
\[E \left[\sigma_T^2 | S_T = K \right] = \frac{\frac{\partial C}{\partial T}}{\frac{1}{2} K^2 \frac{\partial^2 C}{\partial K^2}} \]
which, again, is Equation (5). Hence when the dividend and interest rate are both zero, the derivation of local volatility using Dupire’s approach and the derivation using conditional expectation produce the same result.

4 Derivation of Local Volatility From Implied Volatility, Equation (3)

To express local volatility in terms of implied volatility, we need the three derivatives \(\frac{\partial C}{\partial T}, \frac{\partial C}{\partial K}, \frac{\partial^2 C}{\partial K^2}\) that appear in Equation (1), but expressed in terms of
implied volatility. Following Gatheral [1] we define the log-moneyness

\[y = \ln \frac{K}{F_T} \]

where \(F_T = S_0 \exp \left(\int_0^T \mu_t dt \right) \) is the forward price (\(\mu_t = r_t - q_t \), risk free rate minus dividend yield) and \(K \) is the strike price, and the "total" Black-Scholes implied variance

\[w = \Sigma(K, T)^2 T \]

where \(\Sigma(K, T) \) is the implied volatility. The Black-Scholes call price can then be written as

\[C_{BS} (S_0, K, \Sigma(K, T), T) = F_T \{ N(d_1) - e^y N(d_2) \} \]

where

\[d_1 = \frac{\ln S_0 + \int_0^T (r_t - q_t) dt + \frac{w}{2}}{\sqrt{w}} = -yw^{-\frac{1}{2}} + 1 + \frac{1}{2} w^{\frac{1}{2}} \]

and \(d_2 = d_1 - \sqrt{w} = -yw^{-\frac{1}{2}} - \frac{1}{2} w^{\frac{1}{2}} \).

4.1 The Reparameterized Local Volatility Function

To express the local volatility Equation (1) in terms of \(y \), we note that the market call price is

\[C(S_0, K, T) = C(S_0, F_T e^y, T) \]

and we take derivatives. The first derivative we need is, by the chain rule

\[\frac{\partial C}{\partial y} = \frac{\partial C}{\partial K} \frac{\partial K}{\partial y} = \frac{\partial C}{\partial K} K. \]

The second derivative we need is

\[\frac{\partial^2 C}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial C}{\partial K} \right) K + \frac{\partial C}{\partial K} \frac{\partial K}{\partial y} \]

\[= \frac{\partial^2 C}{\partial K^2} K^2 + \frac{\partial C}{\partial y}, \]

since by the chain rule \(\frac{\partial A}{\partial y} = \frac{\partial A}{\partial K} \frac{\partial K}{\partial y} \), so that \(\frac{\partial}{\partial y} \left(\frac{\partial C}{\partial K} \right) \frac{\partial K}{\partial y} = \frac{\partial^2 C}{\partial K^2} \frac{\partial K}{\partial y} = \frac{\partial^2 C}{\partial K^2} K \). The third derivative we need is

\[\frac{\partial C}{\partial T} = \frac{\partial C}{\partial T} + \frac{\partial C}{\partial K} \frac{\partial K}{\partial T} \]

\[= \frac{\partial C}{\partial T} + \frac{\partial C}{\partial K} K \mu_T \]

\[= \frac{\partial C}{\partial T} + \frac{\partial C}{\partial y} \mu_T \]
since \(K = S_0 \exp \left(\int_0^T \mu_t \, dt + y \right) \) so that \(\frac{\partial K}{\partial T} = K \mu_T \). Equation (28) implies that

\[
\frac{\partial^2 C}{\partial K^2} K^2 = \frac{\partial^2 C}{\partial y^2} - \frac{\partial C}{\partial y}.
\]

Now we substitute into Equation (1), reproduced here for convenience

\[
\frac{\partial C}{\partial T} = 1 - 2K^2 \frac{\partial^2 C}{\partial K^2} + \mu_T \left(C - K \frac{\partial C}{\partial K} \right) - \frac{\partial C}{\partial y} \mu_T = 1 - 2\sigma^2 \left(\frac{\partial^2 C}{\partial y^2} - \frac{\partial C}{\partial y} \right) + \mu_T \left(C - \frac{\partial C}{\partial y} \right)
\]

which simplifies to

\[
\frac{\partial C}{\partial T} = \frac{v_L}{2} \left[\frac{\partial^2 C}{\partial y^2} - \frac{\partial C}{\partial y} \right] + \mu_T C \tag{30}
\]

where \(v_L = \sigma^2(K, T) \) is the local variance. This is Equation (1.8) of Gatheral [1].

4.2 Three Useful Identities

Before expression the local volatility Equation (1) in terms of implied volatility, we first derive three identities used by Gatheral [1] that help in this regard. We use the fact that the derivatives of the standard normal cdf and pdf are, using the chain rule, \(N'(x) = n(x)x' \) and \(n'(x) = -x n(x)x' \). We also use the relation

\[
n(d_1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} (d_2 + \sqrt{w})^2} = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} (d_2 + 2d_2 \sqrt{\pi + w})} = n(d_2) e^{-d_2 \sqrt{\pi - \frac{1}{2} w}} = n(d_2) e^w.
\]

From Equation (25) the first derivative with respect to \(w \) is

\[
\frac{\partial C_{BS}}{\partial w} = F_T \left[n(d_1) d_1 - e^y n(d_2) d_{2w} \right] = F_T \left[n(d_2) e^y \left(d_{2w} + \frac{1}{2} w^{-\frac{1}{2}} \right) - e^y n(d_2) d_{2w} \right] = \frac{1}{2} F_T e^y \left[n(d_2) w^{-\frac{1}{2}} \right]
\]
where \(d_{1w} \) is the first derivative of \(d_1 \) with respect to \(w \) and similarly for \(d_2 \). The second derivative is

\[
\frac{\partial^2 C_{BS}}{\partial w^2} = \frac{1}{2} F_T e^y \left[-n(d_2)d_2d_{2w}w^{-\frac{1}{2}} - \frac{1}{2}n(d_2)w^{-\frac{1}{2}} \right] \tag{31}
\]

\[
= \frac{1}{2} F_T e^y n(d_2)w^{-\frac{1}{2}} \left[-d_2d_{2w} - \frac{1}{2}w^{-1} \right]
\]

\[
= \frac{\partial C_{BS}}{\partial w} \left[\left(yw^{-\frac{1}{2}} + \frac{1}{2}w^{\frac{1}{2}} \right) \left(\frac{1}{2}yw^{-\frac{1}{2}} - \frac{1}{4}w^{-\frac{1}{2}} \right) - \frac{1}{2}w^{-1} \right]
\]

\[
= \frac{\partial C_{BS}}{\partial w} \left[-\frac{1}{8} - \frac{1}{2w} + \frac{y^2}{2w^2} \right].
\]

This is the first identity we need. The second identity we need is

\[
\frac{\partial^2 C_{BS}}{\partial w \partial y} = \frac{1}{2} F_T w^{-\frac{1}{2}} \frac{\partial}{\partial y} \left[e^y n(d_2) \right] \tag{32}
\]

\[
= \frac{1}{2} F_T w^{-\frac{1}{2}} \left[e^y n(d_2) - e^y n(d_2)d_2d_{2y} \right]
\]

\[
= \frac{\partial C_{BS}}{\partial w} \left[1 - d_2d_{2y} \right]
\]

\[
= \frac{\partial C_{BS}}{\partial w} \left(\frac{1}{2} - \frac{y}{w} \right)
\]

where \(d_{2y} = -w^{-\frac{1}{2}} \) is the first derivative of \(d_2 \) with respect to \(y \). To obtain the third identity, consider the derivative

\[
\frac{\partial C_{BS}}{\partial y} = F_T \left[n(d_1)d_{1y} - e^y N(d_2) - e^y n(d_2)d_{2y} \right]
\]

\[
= F_T e^y \left[n(d_2)d_{1y} - N(d_2) - n(d_2)d_{2y} \right]
\]

\[
= -F_T e^y N(d_2).
\]

The third identity we need is

\[
\frac{\partial^2 C_{BS}}{\partial y^2} = -F_T \left[e^y N(d_2) + e^y n(d_2)d_{2y} \right] \tag{33}
\]

\[
= -F_T e^y N(d_2) + F_T e^y n(d_2)w^{-\frac{1}{2}}
\]

\[
= \frac{\partial C_{BS}}{\partial y} + 2\frac{\partial C_{BS}}{\partial w}.
\]

We are now ready for the main derivation of this section.

4.3 Local Volatility in Terms of Implied Volatility

We note that when the market price \(C(S_0, K, T) \) is equal to the Black-Scholes price with the implied volatility \(\Sigma(K, T) \) as the input to volatility

\[
C(S_0, K, T) = C_{BS}(S_0, K, \Sigma(K, T), T). \tag{34}
\]
We can also reparameterize the Black-Scholes price in terms of the total implied volatility \(w = \Sigma(K, T)^2 T \) and \(K = F_T e^y \). Since \(w \) depends on \(K \) and \(K \) depends on \(y \), we have that \(w = w(y) \) and we can write

\[
C(S_0, K, T) = C_{BS}(S_0, F_T e^y, w(y), T). \tag{35}
\]

We need derivatives of the market call price \(C(S_0, K, T) \) in terms of the Black-Scholes call price \(C_{BS}(S_0, F_T e^y, w(y), T) \). From Equation (35), the first derivative we need is

\[
\frac{\partial C}{\partial y} = \frac{\partial C_{BS}}{\partial y} + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial y} \tag{36}
\]

It is easier to visualize the second derivative we need, \(\frac{\partial^2 C}{\partial y^2} \), when we express the partials in \(\frac{\partial C}{\partial y} \) as \(a, b, \) and \(c \):

\[
\frac{\partial^2 C}{\partial y^2} = \frac{\partial a}{\partial y} + \frac{\partial a}{\partial w} \frac{\partial w}{\partial y} + b(w, y) \frac{\partial c}{\partial y} + \left[\frac{\partial b}{\partial y} + \frac{\partial b}{\partial w} \frac{\partial w}{\partial y} \right] c(y) \tag{37}
\]

\[
= \frac{\partial^2 C_{BS}}{\partial y^2} + \frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{\partial w}{\partial y} + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial y^2} + \left[\frac{\partial^2 C_{BS}}{\partial w \partial y} + \frac{\partial^2 C_{BS}}{\partial w^2} \right] \frac{\partial w}{\partial y}
\]

\[
= \frac{\partial^2 C_{BS}}{\partial y^2} + 2 \frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{\partial w}{\partial y} + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 C_{BS}}{\partial w^2} \left(\frac{\partial w}{\partial y} \right)^2.
\]

The third derivative we need is

\[
\frac{\partial C}{\partial T} = \frac{\partial C_{BS}}{\partial T} + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial T} \tag{38}
\]

\[
= \mu_T C + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial T}.
\]

Gatheral explains that the second equality follows because the only explicit dependence of \(C_{BS} \) on \(T \) is through the forward price \(F_T \), even though \(C_{BS} \) depends implicitly on \(T \) through \(y \) and \(w \). The reparameterized Dupire equation (30) is reproduced here for convenience

\[
\frac{\partial C}{\partial T} = \frac{\nu L}{2} \left[\frac{\partial^2 C}{\partial y^2} - \frac{\partial C}{\partial y} \right] + \mu_T C.
\]

We substitute for \(\frac{\partial C}{\partial T}, \frac{\partial^2 C}{\partial y^2}, \) and \(\frac{\partial C}{\partial y} \) from Equations (38), (37), and (36) respectively and cancel \(\mu_T C \) from both sides to obtain

\[
\frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial T} = \frac{\nu L}{2} \left[\frac{\partial^2 C_{BS}}{\partial y^2} + 2 \frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{\partial w}{\partial y} + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 C_{BS}}{\partial w^2} \left(\frac{\partial w}{\partial y} \right)^2 \right.
\]

\[
\left. \frac{\partial C_{BS}}{\partial y} + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial y} \right]. \tag{39}
\]
Now substitute for \(\frac{\partial^2 C_{BS}}{\partial w \partial y} \), \(\frac{\partial^2 C_{BS}}{\partial w^2} \), and \(\frac{\partial^2 C_{BS}}{\partial y^2} \) from the identities in Equations (31), (32), and (33) respectively, the idea being to end up with terms involving \(\frac{\partial C_{BS}}{\partial w} \) on the right hand side of Equation (39) that can be factored out.

\[
\frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial T} = \frac{v_L}{2} \frac{\partial C_{BS}}{\partial w} \left[2 + 2 \left(\frac{1}{2} - \frac{y}{w} \right) \frac{\partial w}{\partial y} + \left(-\frac{1}{8} - \frac{1}{2w} + \frac{y^2}{2w} \right) \left(\frac{\partial w}{\partial y} \right)^2 \right. \\
\left. + \frac{\partial^2 w}{\partial y^2} - \frac{\partial w}{\partial y} \right].
\]

Remove the factor \(\frac{\partial C_{BS}}{\partial w} \) from both sides and simplify to obtain

\[
\frac{\partial w}{\partial T} = v_L \left[1 - \frac{y}{w} \frac{\partial w}{\partial y} + \frac{1}{2} \frac{\partial^2 w}{\partial y^2} + \frac{1}{4} \left(-\frac{1}{4} - \frac{1}{w} + \frac{y^2}{w} \right) \left(\frac{\partial w}{\partial y} \right)^2 \right].
\]

Solve for \(v_L \) to obtain the final expression for the local volatility expressed in terms of implied volatility \(w = \Sigma (K, T)^2 T \) and the log-moneyness \(y = \ln \frac{K}{F_T} \).

\[
v_L = \frac{\frac{\partial w}{\partial T}}{\left[1 - \frac{y}{w} \frac{\partial w}{\partial y} + \frac{1}{2} \frac{\partial^2 w}{\partial y^2} + \frac{1}{4} \left(-\frac{1}{4} - \frac{1}{w} + \frac{y^2}{w} \right) \left(\frac{\partial w}{\partial y} \right)^2 \right]}.\]

4.4 Alternate Derivation

In this derivation we express the derivatives \(\frac{\partial C}{\partial K} \), \(\frac{\partial^2 C}{\partial K \partial y} \), and \(\frac{\partial^2 C}{\partial y^2} \) in the Dupire equation (1) in terms of \(y \) and \(w = w(y) \), but we substitute these derivatives directly in Equation (1) rather than in (30). This means that we take derivatives with respect to \(K \) and \(T \), rather than with \(y \) and \(T \). Recall that from Equation (35), the market call price is equal to the Black-Scholes call price with implied volatility as input

\[
C(S_0, K, T) = C_{BS}(S_0, F_T e^y, w(y), T).
\]

Recall also that from Equation (25) the Black-Scholes call price reparameterized in terms of \(y \) and \(w \) is

\[
C_{BS} (S_0, F_T e^y, w(y), T) = F_T \{ N(d_1) - e^y N(d_2) \}
\]

where \(d_1 \) is given in Equation (26), and where \(d_2 = d_1 - \sqrt{w} \). The first derivative we need is

\[
\frac{\partial C}{\partial K} = \frac{\partial C_{BS}}{\partial y} \frac{\partial y}{\partial K} + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial K} = \frac{1}{K} \frac{\partial C_{BS}}{\partial y} + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial K}.
\]
The second derivative is
\[
\frac{\partial^2 C}{\partial K^2} = -\frac{1}{K^2} \frac{\partial C_{BS}}{\partial y} + \frac{1}{K} \frac{\partial}{\partial K} \left(\frac{\partial C_{BS}}{\partial y} \right),
\]
\[
+ \frac{\partial}{\partial K} \left(\frac{\partial C_{BS}}{\partial w} \right) \frac{\partial w}{\partial K} + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial K^2},
\]
\[\text{(41)}\]

Let \(A = \frac{\partial C}{\partial y} \) for notational convenience. Then \(\frac{\partial}{\partial K} \left(\frac{\partial C}{\partial y} \right) = \frac{\partial A}{\partial K} \) and
\[
\frac{\partial}{\partial K} \left(\frac{\partial C_{BS}}{\partial y} \right) = \frac{\partial A}{\partial K} \frac{\partial y}{\partial K} + \frac{\partial A}{\partial w} \frac{\partial w}{\partial K} = \frac{\partial^2 C_{BS}}{\partial y^2} \frac{1}{K} + \frac{\partial^2 C_{BS}}{\partial w^2} \frac{\partial w}{\partial K},
\]
\[\text{(42)}\]

Similarly
\[
\frac{\partial}{\partial K} \left(\frac{\partial C_{BS}}{\partial w} \right) = \frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{1}{K} + \frac{\partial^2 C_{BS}}{\partial w^2} \frac{\partial w}{\partial K}.
\]
\[\text{(43)}\]

Substituting Equations (42) and (43) into Equation (41) produces
\[
\frac{\partial^2 C}{\partial K^2} = -\frac{1}{K^2} \frac{\partial C_{BS}}{\partial y} + \frac{1}{K} \left(\frac{\partial^2 C_{BS}}{\partial y^2} \frac{1}{K} + \frac{\partial^2 C_{BS}}{\partial w^2} \frac{\partial w}{\partial K} \right)
\]
\[
+ \left(\frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{1}{K} \frac{\partial w}{\partial K} + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial K^2} \right) = \frac{1}{K^2} \left(\frac{\partial^2 C_{BS}}{\partial y^2} - \frac{\partial C_{BS}}{\partial y} \right) + \frac{2}{K} \frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{\partial w}{\partial K}
\]
\[
+ \frac{\partial^2 C_{BS}}{\partial w^2} \left(\frac{\partial w}{\partial K} \right)^2 + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial K^2}.
\]
\[\text{(44)}\]

The third derivative we need is
\[
\frac{\partial C}{\partial T} = \frac{\partial C_{BS}}{\partial T} + \frac{\partial C_{BS}}{\partial y} \frac{\partial y}{\partial T} + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial T}
\]
\[\text{(45)}\]
\[
= \mu_T C_{BS} + \frac{\partial C_{BS}}{\partial y} \mu_T + \frac{\partial C_{BS}}{\partial w} \mu_T,
\]

again using the fact that \(\frac{\partial C_{BS}}{\partial y} \) depends explicitly on \(T \) only through \(F_T \). Now substitute for \(\frac{\partial C}{\partial K}, \frac{\partial C}{\partial y}, \) and \(\frac{\partial C}{\partial T} \) from Equations (40), (44), and (45) respectively into Equation (4) for Dupire local variance, reproduced here for convenience.
\[
\sigma^2 = \frac{\frac{\partial C}{\partial T} - \mu_T [C_{BS} - K \frac{\partial C}{\partial K}]}{\frac{1}{2} K^2 \frac{\partial^2 C}{\partial K^2}}.
\]

13
We obtain, after applying the three useful identities in Section 4.2,

\[
\sigma^2 = \mu_T C_{BS} + \frac{\partial C_{BS}}{\partial y} \mu_T + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial T} - \mu_T \left(C_{BS} - K \left(\frac{1}{K} \frac{\partial C_{BS}}{\partial y} + \frac{\partial C_{BS}}{\partial w} \frac{\partial w}{\partial K} \right) \right) + \frac{1}{2} K^2 \left(\frac{1}{K} \left(\frac{\partial^2 C_{BS}}{\partial y^2} - \frac{\partial C_{BS}}{\partial y} \right) \right) + 2 \frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{\partial w}{\partial K} + \frac{\partial^2 C_{BS}}{\partial w^2} \left(\frac{\partial w}{\partial K} \right)^2 + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial T \partial K}.
\]

Applying the three useful identities in Section 4.2 allows the term \(\frac{\partial C_{BS}}{\partial w}\) to be factored out of the numerator and denominator. The last equation becomes

\[
\sigma^2 = \frac{1}{2} K^2 \left[\frac{1}{K} \left(\frac{\partial^2 C_{BS}}{\partial y^2} - \frac{\partial C_{BS}}{\partial y} \right) \right] + 2 \frac{\partial^2 C_{BS}}{\partial y \partial w} \frac{\partial w}{\partial K} + \frac{\partial^2 C_{BS}}{\partial w^2} \left(\frac{\partial w}{\partial K} \right)^2 + \frac{\partial C_{BS}}{\partial w} \frac{\partial^2 w}{\partial T \partial K}.
\]

Equation (46) can be simplified by considering deriving the partial derivatives of the Black-Scholes total implied variance, \(w = \Sigma(K, T) T\). We have \(\frac{\partial w}{\partial T} = 2 \Sigma T \frac{\partial \Sigma^2}{\partial T} + \Sigma^2, \frac{\partial w}{\partial K} = 2 \Sigma T \frac{\partial \Sigma}{\partial K}\), and \(\frac{\partial^2 w}{\partial K^2} = 2 T \left(\frac{\partial \Sigma^2}{\partial K} \right)^2 + \Sigma \frac{\partial^2 \Sigma}{\partial K^2}\). Substitute into Equation (46). The numerator in Equation (46) becomes

\[
\Sigma^2 + 2 \Sigma T \left(\frac{\partial \Sigma}{\partial T} + \mu_T K \frac{\partial \Sigma}{\partial K} \right)
\]

and the denominator becomes

\[
1 + 2 K \Sigma T \left(\frac{1}{2} - \frac{y}{w} \right) \frac{\partial \Sigma}{\partial K} + 2 K^2 \Sigma^2 T^2 \left(-\frac{1}{8} - \frac{1}{2 \Sigma^2 T} + \frac{y^2}{2 w^2} \right) \left(\frac{\partial \Sigma}{\partial K} \right)^2 + K^2 T \left[\left(\frac{\partial \Sigma}{\partial K} \right)^2 + \Sigma \frac{\partial^2 \Sigma}{\partial K^2} \right].
\]

Replacing \(w\) with \(\Sigma^2 T\) everywhere in the denominator produces

\[
1 + 2 K \Sigma T \left(\frac{1}{2} - \frac{y}{\Sigma^2 T} \right) \frac{\partial \Sigma}{\partial K} + 2 K^2 \Sigma^2 T^2 \left(-\frac{1}{8} - \frac{1}{2 \Sigma^2 T} + \frac{y^2}{2 \Sigma^2 T^2} \right) \left(\frac{\partial \Sigma}{\partial K} \right)^2 + K^2 T \left[\left(\frac{\partial \Sigma}{\partial K} \right)^2 + \Sigma \frac{\partial^2 \Sigma}{\partial K^2} \right] = 1 + K \Sigma T \frac{\partial \Sigma}{\partial K} - \frac{2 K y \partial \Sigma}{\Sigma} \frac{\partial \Sigma}{\partial K} - \frac{K^2 \Sigma^2 T^2}{4} \left(\frac{\partial \Sigma}{\partial K} \right)^2 + \frac{K^2 y^2}{\Sigma^2} \left(\frac{\partial \Sigma}{\partial K} \right)^2 + K^2 \Sigma T \frac{\partial^2 \Sigma}{\partial K^2}
\]

\[
= \left(1 - \frac{K y \partial \Sigma}{\Sigma} \frac{\partial \Sigma}{\partial K} \right)^2 + \left[1 - 2 K y \frac{\partial \Sigma}{\Sigma} \frac{\partial \Sigma}{\partial K} + \left(\frac{K y \partial \Sigma}{\Sigma} \right)^2 \right].
\]

Substituting the numerator in (47) and the denominator in (48) back to Equation (46), we obtain

\[
\frac{\Sigma^2 + 2 \Sigma T \left(\frac{\partial \Sigma}{\partial T} + \mu_T K \frac{\partial \Sigma}{\partial K} \right)}{\left(1 + \frac{K y \partial \Sigma}{\Sigma} \frac{\partial \Sigma}{\partial K} \right)^2 + K \Sigma T \left[\frac{\partial \Sigma}{\partial K} - \frac{1}{4} K \Sigma T \left(\frac{\partial \Sigma}{\partial K} \right)^2 + K \frac{\partial^2 \Sigma}{\partial K^2} \right]}
\]
See also the dissertation by van der Kamp [4] for additional details of this alternate derivation.

References

